Critical Cover Crop-Free Period in Corn

Aaron Brooker* Karen Renner Christy Sprague

Michigan State University

Interseeding cover crops in corn in Michigan

- Why?
 - Limited window to seed a cover crop following corn grain harvest
 - Provides a longer period to benefit from cover crops?
 - Soil health benefits
 - Weed suppression

Corn harvested 9 November

Interseeding cover crops in corn in Michigan

- Why?
 - Limited window to seed a cover crop following corn grain harvest
 - Provides a longer period to benefit from cover crops?
 - Soil health benefits
 - Weed suppression

Corn harvested 9 November

Research Questions

- Can cover crops establish successfully in corn from V1-V7?
- 2. Do interseeded cover crops suppress weeds?
- 3. Are interseeded cover crops competitive with corn?
- 4. Can preemergence herbicides be used to suppress weeds in interseeded cover crops?

Interseeding cover crops in corn

- Previous studies have looked at late interseeding of cover crops in corn at V5-V7 growth stages (Roth et al., 2015; Baributsa et al., 2008)
 - No adverse effects on yield

Interseeding Cover Crops – Establishment, Competition, and Weed Suppression

- 2015 and 2016 in East Lansing, MI
- Annual ryegrass, Tillage Radish[®], and crimson clover were broadcast interseeded in corn at varying stages of corn development
- Glyphosate was applied at 0.84 kg ae/ha prior to each interseeding

Cover Crop	Seeding Rate		
	(kg/ha)	Seeds/0.25 m ²	
annual ryegrass	9	207	
Tillage Radish®	9	19	
crimson clover	17	89	

Interseeding Cover Crops – Establishment, Competition, and Weed Suppression Interseeding timings

2016

Data Collected

- Two 0.25 m² quadrats/plot
- Cover crop and weed density measurements:
 - 30 days after cover crop planting (DACP)
 - At peak cover crop biomass prior to corn harvest
 - Following spring (2015)
- Cover crop and weed biomass was harvested in fall at peak biomass and the following spring
- Corn grain harvested

Can preemergence herbicides be used with interseeded cover crops? – Greenhouse

Annual ryegrass, Tillage Radish[®], and crimson clover planted: 10 cm² pots 16 seeds/pot

Biomass harvested, dried, and weighed

Pots sprayed with preemergence herbicies

7, 14, 21, 28 DAP density and injury ratings Can preemergence herbicides be used with interseeded cover crops? – Greenhouse

	Rates		
	1 x	1/2 x	1/4 x
Herbicide	g ae/ha ⁻¹		
<i>dimethenamid-P</i> + saflufenacil (Verdict)	657 + 74	329 + 37	165 + 19
dimethenamid-P (Outlook)	1005	503	251
saflufenacil (Sharpen)	75	38	19
pyroxasulfone (Zidua)	180	90	45
isoxaflutole (Balance Flexx)	105	53	26

Herbicide rates applied for greenhouse experiment Pots were sprayed immediately after seeding

Can preemergence herbicides be used with interseeded cover crops? – Field experiments

- Campus (East Lansing, MI) *
- On-Farm (Springport, MI) *
- Annual ryegrass, Tillage Radish[®], and crimson clover
 - Campus (V3 and V6)
 - On-Farm (V3 only)
- Preemergence herbicides applied following corn planting

Herbicide	Rate
Treatments	g ae/ha ⁻¹
dimethenamid-P	1005
isoxaflutole	105
pyroxasulfone	180
saflufenacil	75

Campus hand broadcast seeders

On-Farm broadcast interseeder (36 rows)

Statistical Analyses

- Data were analyzed using Proc Mixed in SAS
- Fisher's Protected LSD was used to determine differences between treatment means (p<0.05)
- **Objectives 1-3.** Effects of interseeding timing x cover crop species on:
 - Cover crop density and biomass
 - Weed density and biomass
 - Corn grain yield
- **Objective 4.** Effects of herbicide x rate on:
 - Cover crop density, biomass, and injury

Did cover crops establish in corn?

Rainfall soon after interseeding affected cover crop establishment

Green circles represent corn planting each year. Blue and orange circles represent interseeding dates.

Cover crop biomass was greatest for annual ryegrass at the V4-V6 interseedings – 2015

Cover CropDensity – 2015

- Annual ryegrass densities were greatest for the V5-V6 timings
- Tillage Radish[®] densities were greatest at the V4-V5 timings
- Crimson clover densities were greatest at the V5 timing

Cover Crop Density – 2016

 Densities for all three cover crops were greatest at the V7 interseeding timing

Did cover crops reduce weed biomass or density?

Weed biomass was greatest at the V1 interseeding – 2015

2015 Weed Biomass at each Interseeding Timing

*Glyphosate was applied prior to each interseeding timing.

Weed biomass was more variable across interseeding timings – 2016

*Glyphosate was applied prior to each interseeding timing.

Did cover crops compete with corn?

Grain yield was reduced at the V1 interseeding timing in 2015 only

2015 and 2016 Corn Grain Yield for each Interseeding Timing

2015 2016

Did cover crops tolerate preemergence herbicides?

Annual ryegrass injury from PRE herbicides in 2016 - Greenhouse

	Rate		
Herbicide	1/4x	1/2x	1x
dimethenamid-P + saflufenacil	28 c	78 ab	<mark>89</mark> a
dimethenamid-P	<mark>68</mark> b	84 ab	95 a
saflufenacil	0 d	0 d	0 d
pyroxasulfone	37 c	78 ab	90 a
isoxaflutole	0 d	0 d	0 d
	Green	- 0-10%	

Green = 0-10% Yellow = >10% and <50% Red = 50-100%

Tillage Radish[®] injury from PRE herbicides in 2016 - Greenhouse

	Rate			
Herbicide	1/4x	1/2x	1x	
dimethenamid-P + saflufenacil	0	1	0	
dimethenamid-P	0	1	0	
saflufenacil	0	0	1	
pyroxasulfone	0	2	1	
isoxaflutole	0	1	0	

*Radish injury ratings were not significantly different from each other Green = 0-10% Yellow = >10% and <50% Red = 50-100%

Crimson clover injury from PRE herbicides in 2016 - Greenhouse

	Rate			
Herbicide	1/4x	1/2x	1 x	
dimethenamid-P + saflufenacil	1 e	14 bcd	18 bc	
dimethenamid-P	7 cde	17 bc	35 a	
saflufenacil	1 e	0 e	1 e	
pyroxasulfone	0 e	2 e	3 de	
isoxaflutole	8 cde	19 b	23 b	

Green = 0-10% Yellow = >10% and <50% Red = 50-100%

What about in the field?

Tolerance to PRE herbicides in 2016 – On-farm and Campus

- Tillage radish emergence was highly variable for the campus and on-farm sites
- Crimson clover emergence was poor at both locations

Annual ryegrass tolerance to PRE herbicides – 2016

	Greenhouse	On-Farm (V3 Seeding)	Campus (V3 Seeding)	Campus (V6 Seeding)
Herbicide	Rate 1x			
dimethenamid-P	95 a*	62.5 b	92.5 a	92.5 a
saflufenacil	0 b	7.5 c	25 b	17.5 b
pyroxasulfone	90 a	100 a	97.5 a	97.5 a
isoxaflutole	0 b	15 c	44 b	0 b

*Means within the column followed by the same letter are not different

Visual injury ratings for greenhouse and onfarm experiment: -Green = 0-10%

-Yellow = >10% and <50%

-Red = 50-100%

- Did cover crops establish in corn?
 - Cover crops established every year at all interseeding timings.

- Cover crops established every year at all interseeding timings
- Did cover crops compete with weeds?
 - Cover crops may have contributed to decreased weed densities in 2015 at the V4-V6 interseeding timings
 - At later interseeding timings, weeds were likely reduced by glyphosate and corn canopy closure as well

- Cover crops established every year at all interseeding timings
- Cover crops may have contributed to decreased weed densities in 2015 at the V4-V6 interseeding timings
- Did cover crops compete with corn?
 - Cover crops did not reduce corn grain yield
 - Weed pressure likely caused the yield reduction at V1 in 2015

- Cover crops established every year at all interseeding timings
- Cover crops may have contributed to decreased weed densities in 2015 at the V4-V6 interseeding timings
- Cover crops did not reduce corn grain yield
- Did cover crops tolerate preemergence herbicides?
 - Annual ryegrass was tolerant to saflufenacil and isoxaflutole in the greenhouse
 - Tillage Radish[®] tolerated all herbicides in the greenhouse
 - Crimson clover was tolerant to saflufenacil and pyroxasulfone in the greenhouse

- Cover crops established every year at all interseeding timings
- Cover crops may have contributed to decreased weed densities in 2015 at the V4-V6 interseeding timings
- Cover crops did not reduce corn grain yield
- Did cover crops tolerate preemergence herbicides?
 - Annual ryegrass was tolerant to saflufenacil and isoxaflutole in the greenhouse
 - Tillage Radish[®] tolerated all herbicides in the greenhouse
 - Crimson clover was tolerant to saflufenacil and pyroxasulfone in the greenhouse

 Continued evaluation of interseed cover crops in corn from V1-V7

- Continued evaluation of interseed cover crops in corn from V1-V7
- Continued evaluation of interseeded cover crops onfarm
 - Fertility
 - Seeding rates

- Continued evaluation of interseed cover crops in corn from V1-V7
- Continued evaluation of interseeded cover crops onfarm
- Determine the effects of varying cover crop interseeding rates on cover crop competitiveness with corn

- Continued evaluation of interseed cover crops in corn from V1-V7
- Continued evaluation of interseeded cover crops onfarm
- Determine the effects of varying cover crop interseeding rates on cover crop competitiveness with corn
- Refine the integration of preemergence weed control practices in interseeded systems

Thank You! Questions?

Project **GREEEN**

Michigan Corn Growers Association

www.micorn.org